NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription.
نویسندگان
چکیده
Rhizobial Nod factors induce in their legume hosts the expression of many genes and set in motion developmental processes leading to root nodule formation. Here we report the identification of the Medicago GRAS-type protein Nodulation signaling pathway 1 (NSP1), which is essential for all known Nod factor-induced changes in gene expression. NSP1 is constitutively expressed, and so it acts as a primary transcriptional regulator mediating all known Nod factor-induced transcriptional responses, and therefore, we named it a Nod factor response factor.
منابع مشابه
Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2.
Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 an...
متن کاملAn ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction.
Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown ...
متن کاملGRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula.
The symbiotic association of legumes with rhizobia involves bacterially derived Nod factor, which is sufficient to activate the formation of nodules on the roots of the host plant. Perception of Nod factor by root hair cells induces calcium oscillations that are a component of the Nod factor signal transduction pathway. Perception of the calcium oscillations is a function of a calcium- and calm...
متن کاملMicroRNAs in the rhizobia legume symbiosis.
Legumes are agronomically valuable crops for food and fodder production worldwide because they are rich in protein, oil, fiber, and micronutrients. In addition, legumes require less chemical fertilizer than other major crop plants since they can assimilate some nutrients through symbiotic interactions with soil microbes. These relationships are mutually beneficial for the partners because the p...
متن کاملDELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection
Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 308 5729 شماره
صفحات -
تاریخ انتشار 2005